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1. Background 

The Virginia Behavioral Risk Factor Surveillance System Survey (BRFSS) is designed to 

provide stable and accurate estimates on key health outcomes for the household population of 

adults 18 years of age and older who reside in the Commonwealth of Virginia. The survey is 

not designed, however, to provide estimates by county. As such, the survey sample sizes are 

not sufficiently large to provide stable direct estimates of important health outcomes by 

county (or, in the case of Virginia, by independent city). 

Small area estimation (SAE) may be able to provide reliable estimates for counties than can 

be obtained from direct survey estimates alone. SAE methods combine direct estimates of 

outcomes from the survey with estimates modeled using auxiliary or outside data. This 

auxiliary data can come either from a larger survey such as the U.S Census Bureau’s 

American Community Survey (ACS) or from administrative data such as vital statistics 

records. Through statistical models of the mathematical relationships between the outcome of 

interest and area-level characteristics, we can develop estimates for small areas that “borrow 

strength” from data about other, similar areas. From these models we can get synthetic 

estimates that represent the expected value of the outcome by county with similar (modeled) 

characteristics.  

There are several important caveats to keep in mind in presenting and using SAEs: 

 Whereas direct survey estimates contain sampling error and other sources of survey error, 

SAEs additionally contain error from the auxiliary data sources as well as model error. 

The quality of SAEs thus depends not only on the quality of the underlying survey data 

but also on the quality of the auxiliary data and the model used to create the estimates. As 

such, just as survey estimates are presented with information about the survey 

methodology and measures of uncertainty such as standard errors or confidence intervals, 

SAEs should be presented with additional information about the auxiliary data and 

modeling procedures along with information about the quality of the estimates. 

 Related to the above, SAEs include modeled or synthetic estimates. As such, an area’s 

SAE may differ from the true value of the outcome when there are key explanatory 

variables that impact the outcome that are not included in the model. As a hypothetical 

example, two counties with similar demographic characteristics and administrative data 

(and thus similar synthetic estimates) may truly differ on fruit and vegetable consumption 

due to the presence of a farmer’s market in one county but not in the other. Users of 

SAEs should consider the data included in the model along with local conditions or 

characteristics not included in the model that may impact the accuracy of a given SAE. 

The goal of the SAE for the 2014 Virginia BRFSS was to provide estimates of 36 key health 

outcome measures for the Commonwealth of Virginia’s 133 counties and independent cities.  
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2. Small Area Estimation Procedures  

Small area estimation (SAE) is an area of active growth and research in survey statistics that 

emerged since the 1990s. This followed greater demands for detailed estimates from data 

users accompanied with greater availability of computing power. SAE addresses the problem 

of obtaining reasonable estimates for domains where small sample sizes do not allow direct 

estimation using survey data only (including domains with zero sample observations), e.g., at 

the levels of a county or a metro area in national and state samples. An encompassing 

reference on SAE is Rao (2003)1. 

The modern approach to SAE involves the use of statistical models to predict the outcome of 

interest, such as current smoking. Direct estimates from the survey data are combined with 

synthetic estimators from statistical models to create a composite SAE.  

Each of the thirty-six health indicator output files contain results by county.  These output 

include the one-sided lower and upper bounds at the 95% confidence interval and the point 

(best) estimate as well as bell curve charts with the two-tailed 90% confidence interval 

represented by gray markers.   

                                                      

1 Rao, J. N. (2003). Small Area Estimation. Hoboken, NJ: Wiley. 
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3. CDC BRFSS SAE Methodology 

3.1 BRFSS SAE Estimation 

The Centers for Disease Control and Prevention (CDC) has developed a SAE system for a 

portion of the BRFSS data referred to as SMART (Selected Metropolitan/Micropolitan Area 

Risk Trends) for counties that have sample sizes of at least 500. Pierannunzi et. al. 20162  

outlines the CDC method to model health outcomes at the county level using this procedure 

(referred to as SMART-SAE), which is described below. Our comments regarding the 

implementation of these procedures and potential improvements, are provided as sub-items 

and are italicized. 

1. BRFSS data are re-raked to state-level demographic variables (age by gender, 

race/ethnicity, education, marital status, (housing) tenure, gender by race-ethnicity, age 

by race-ethnicity, region by age, gender, and race-ethnicity), as well as county-level 

targets (county by sex, age, and race) using Nielsen Claritas data. Weights are then 

rescaled to the nominal sample size for the county. 

a. The Nielsen Claritas data set was apparently chosen for historic reasons, as it was 

used before by the CDC for similar purposes. The American Community Survey 

(ACS) based margins appear to be more reliable. 

b. There is evidence (Pfeffermann et. al. 1998) that scaling by the effective sample size, 

rather than by the nominal sample size, works better in reducing small sample biases 

of variance parameters in mixed models. 

2. BRFSS outcomes are imputed using a hot-deck procedure. 

a. The hot-deck procedure is somewhat restrictive in that it has a certain low-

dimensional structure in mind. Namely, that the missingness is conditionally 

independent of the outcomes within the imputation cells. We believe that the 

regression model for the outcome that will be proposed at a later stage does a similar 

or a better job incorporating the missing data in the outcomes. 

b. In addition, imputation introduces a source of variation in the data that needs to be 

accounted for in the standard errors of the SAEs down the line. To incorporate the 

imputation variation correctly, multiple imputation procedures and Rubin (1978) 

rules should be used. It is unclear whether that was done in SMART-SAE by the CDC. 

c. Given this, for our work with the 2014 Virginia BRFSS SAE, we chose to forego the 

imputation step, as the demographic predictors were used in the model for the 

outcome. 

                                                      

2 Pierannunzi C, Xu F, Wallace RC, Garvin W, Greenlund KJ, Bartoli W, et al. A Methodological Approach to 

Small Area Estimation for the Behavioral Risk Factor Surveillance System. Prevention of Chronic 

Diseases 2016;13:150480. DOI: http://dx.doi.org/10.5888/pcd13.150480. 
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3. ACS public use microdata series (PUMS) data are obtained.  

a. Pierannunzi et. al. (2016) describes this step as creating a single-year data set from 

multiple years of ACS data. We believe it is better to use the data set created by the 

Census Bureau specifically for the purposes of providing sufficient sample sizes at 

low levels of geography, namely the 5-year data set. For 2014 Virginia BRFSS SAE 

we used the ACS 5-year data set for 2010–2014. 

4. ACS data are approximately subset to county levels. The finest level of geography 

provided in ACS PUMS data is that of the public use microdata area (PUMA), a 

contiguous geographic area with a total population of about 100,000. Large counties can 

be split into several PUMAs, and smaller counties are aggregated into a single PUMA, so 

there is no 1:1 relation. Population fraction weights (% of the PUMA population found in 

a county) are used to distribute the total population of a PUMA to its component counties 

if needed. SMART-SAE used the data from Missouri Census Data Center 

(http://mcdc.missouri.edu/websas/geocorr14.html) to obtain these fractions. 

a. Alternatively, accurate county variables are available in the protected ACS data 

available to researchers through research data centers.  

5. ACS data are re-raked to Nielsen Claritas data. 

a. The utility of this step is unclear to us. ACS is a better quality data set than any 

commercial data set. The only reasonable justification is to align the totals to the 

same ones used in BRFSS raking. Since we do not have the Nielsen Claritas data set 

we cannot perform the SMART-SAE raking steps 1 and 5. However, we can rely on 

using the low level ACS data (as detailed in 3.a. above). 

6. ACS and BRFSS data are stacked together to prepare for modeling. 

7. A logistic random effects model with county as a random effect, and race, gender, and 

age as the main effects, is fit to the data. 

a. The model is known as the unit-level model (Rao and Molina 2015, Sec. 4.2), where 

modeling happens at the level of each individual. The use of the model for SAE 

assumes that the values of the explanatory variables are known for all units in the 

population – (see 5a in Section 3.2 Challenges and Solutions below). No data source 

exists for the U.S. population that can act as a complete population register with the 

required race, gender, and age information. 

b. An alternative is a model in which the response variable is the direct estimate for an 

area, and all explanatory variables are at the area level. This approach is known as 

an area-level model in SAE literature (Rao and Molina 2015, Sec. 4.3). Area-level 

models do not require the knowledge of the values of explanatory variables for all 

units in the population, and thus are easier to use in the U.S. This model is what we 

used for the 2014 Virginia BRFSS SAE 

c. The SMART-SAE model used by the CDC can arguably be improved by adding 

county-level contextual variables.  

http://mcdc.missouri.edu/websas/geocorr14.html
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8. Predicted probabilities are obtained for the age-gender-race cells within a county.  

a. This was not spelled out as a separate step by Pierannunzi et. al. 2016, arguably 

because its implementation is through the same SAS PROC GLIMMIX procedure call 

utilized in step 7 listed above. However, there are a variety of ways to create 

predictions. In Stata, which we use for modeling, the model fitting steps and 

generating prediction steps are separated in syntax. 

b. Pierannunzi et. al. (2016) use the language of “best linear unbiased prediction”. 

However, these do not exist for the nonlinear models like logistic regression used 

here. The appropriate concept for the binary data are empirical best predictions 

(Jiang and Lahiri 20013). 

c. Aggregation of predictions to the county level is not described in the Pierannunzi et. 

al. paper in sufficient detail. Several implementations are possible.  

i. The predicted probabilities (incorporating the random effect of the county) 

could be obtained for the units in the ACS PUMS using the regression 

coefficients obtained on BRFSS data. These predicted probabilities can then be 

added up with their appropriate ACS weights (split between counties as needed, 

as explained above in item 4c) to form county-level SAE. 

ii. The predicted probabilities for all age-gender-race groups within a county can 

be obtained (incorporating the random effect of the county), and then these 

predicted probabilities can be added up using the estimated proportions of these 

population groups using aggregate ACS data such as the FactFinder tables. 

This approach may produce more precise estimates, as only a fraction of ACS 

data is released as the public use data, while the FactFinder calculations are 

based on the complete ACS data set. However, computation of the standard 

errors for these predictions through aggregation of cell-level standard errors is 

difficult. 

d. In a strict sense of SAE methodology, SMART-SAE appears to be synthetic estimates, 

in that they only use the estimated model. Better estimates can be obtained by 

combining the synthetic estimates with the direct survey estimates into composite 

estimates. The latter can increase the effective sample size used in estimation, and 

better protect against possible model violations, such as important covariates not 

included in the model. 

Previous work conducted by the CDC4 compared a number of possible approaches to SAE, 

including:  

                                                      

3 Jiang, J., and Lahiri, P. (2001) Empirical Best Prediction for Small Area Inference with Binary Data. Annals of 

the Institute of Statistical Mathematics, 53, 217–243. 

4 Gotway-Crawford, C., D. Ford and C. Pierannunzi (2014) “Comparison of Small Area Estimation Methods for 

use by the BRFSS”. Presentation at the annual AAPOR conference. 
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1. Unweighted logistic random effects model; 

2. Weighted logistic random effects model; 

3. Multi-level model; 

4. Aggregation over time (7-year window); 

5. Empirical best linear unbiased prediction, weighted and benchmarked; 

6. Constrained and benchmarked model (essentially, a highly detailed raking procedure); 

and 

7. Bayesian SAE. 

The weighted logistic regression performed best, and was chosen as the backbone of the 

procedure outlined above. 

3.2 Challenges and Solutions 

From the total survey error perspective, aside from measurement errors, the errors in 

representation and modeling in the proposed SAE estimation plan are detailed below. 

Challenges: 

1. Coverage error for the non-telephone population. Extrapolation to the non-telephone 

population is implicitly performed by using the ACS areal frame data. However, the 

limited use of the person-level demographic variables effectively assumes that phone 

coverage is sufficiently well explained by these variables only. 

2. BRFSS nonresponse error (partially compensated by weighting). 

3. For Steps 1 and 5 of the CDC’s SMART-SAE procedure as detailed in Section 3.1, the 

county-level population estimates used as targets for raking are likely to have nonzero 

levels of uncertainty. The resulting BRFSS estimates thus partially inherit sampling error 

from the ACS which can be nontrivial for small counties where ACS sample sizes may 

be in the low hundreds. Sampling errors in targets can be quantified for the ACS data; 

however, properly accounting for them downstream becomes a complicated exercise 

(Dever and Valliant 20105). 

4. Overall, the utility of step 5 of the CDC’s SMART-SAE procedure as detailed in Section 

3.1 is unclear, as the direct estimates for which the re-calibrated weights may arguably 

provide improved inference with lesser biases are never obtained. 

Solution: 

                                                      

5 Dever, J. A. and R. Valliant (2010). A comparison of variance estimators for poststratification to estimated 

control totals. Survey Methodology 36 (1), 45-56. 
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5. If county-level variables are to be used in modeling the outcomes, a very broad range of 

possibilities opens up for the data sources. We identified the following data sets that can 

be used as sources for the county-level explanatory variables: 

a. ACS Tables (the possibilities are really endless, as FactFinder can produce several 

thousand tables at the county level).  It can be reasonably expected that some of the 

demographic variables may have predictive power. Also, socioeconomic status 

variables (poverty rates and the use of government assistance programs) and limited 

health-related variables (health insurance status) may turn out to be helpful. 

b. Census Planning Database. While this database mostly reuses the ACS data, it also 

contains additional variables such as the Census mail return rates. It is somewhat 

unclear whether these variables can be useful in modeling health outcomes, but they 

may serve as proxies for the willingness of the population to cooperate with the 

government (which in turn may be associated with the health outcomes in programs 

that have explicit health policies, such as vaccinations or smoking). 

c. National Center for Education Statistics Data for school districts that, in case of 

Virginia, align with counties. Variables such as percent of students eligible for free or 

reduced price lunch are proxies for the county-level socio-economic status, while 

teacher-to-student ratio, availability of the local government funding. 

d. U.S. Environmental Protection Agency Environmental Quality Index (EQI). This  

includes the measured concentrations of certain known pollutants, aggregated to the 

air quality, water quality and land quality indices, sociodemographic domain and built 

environment domain quality indices, and the overall environmental equality index. 

e. County-level health estimates from the 2000 SAE project of the National Cancer 

Institute (http://sae.cancer.gov; Raghunathan et. al. 2007). Four estimates are 

available: current smoking, ever smoked, Pap smear, and mammography. 

Additionally, the Virginia Department of Health provided the following data sets which 

were used in the modeling: 

a. Age-Adjusted Malignant Cancer Incidence Rates and Counts for Selected Cancer 

Sites by sex, VA 2013. 

b. Mortality rates by source and age, VA 2010–2014. 

c. Hospitalization rates, by source, VA 2005–2013. 

Challenges:   

6. Given the multitude of the possible area-level variables available, the issue of selecting 

the best ones will arise. Unfortunately, the current methodological literature on SAE is 

http://sae.cancer.gov/
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scarce on the topic. Pfeffermann (20136) proposes to use conditional Akaike information 

criterion to find the best fitting model given the eventual focus on prediction for the 

existing set of areas (rather than a generalization to a fictional universe of all possible 

areas implied by the Gaussian distribution of the random effects). Application of this 

proposal would require fitting a broad number of random effects models, which does not 

appear to be computationally feasible (especially given the interest of the current project 

in 36 health indicators, each of which will likely require its own model). 

a. A faster search can be conducted with more aggregated data that would not require 

mixed modeling.  

i. Fay-Herriot (19787) area-level regression model is formulated, where the 

dependent variable is given by the direct estimates of the outcome at the area 

level (transformed to stabilize the error variance), and explanatory variables are 

observed at the area level, as well. 

ii. The space of possible regressors is narrowed down using an elimination 

procedure, in which a candidate variable is used as a regressor along with a 

fixed set of demographic variables (e.g., age, gender and race, as in the CDC 

procedure), and is omitted from the further consideration if it failed to achieve 

significance at a conservative level of 0.20. 

iii. An exhaustive search in the space of the possible models of a given complexity 

(e.g., the base demographics + 3 additional regressors) is conducted, and the 

best model selected using the traditional AIC. This space would usually include 

1,000 to 4,000 regression models to run, and the time scale for model search is 

single digit hours per outcome. 

b. To account for the potential model selection error, a limited number of the best fitting 

models can be retained for each outcome. Variation between the estimates based on 

the different models may serve as a measure of the error due to the model selection 

step. 

7. The sampling error in the regression coefficients (step 4 in the SMART-SAE procedure) 

needs to be accounted for. 

8. The sampling error in the ACS aggregation (step 5 in the SMART-SAE procedure) needs 

to be accounted for. We utilized a faster Taylor series linearization using the strata and 

cluster variables provided with the IPUMS data. 

9. Self-contained analytical expressions for the Mean Squared Error (MSE) of the SAEs 

(Rao and Molina 2015) account for the sampling and the model fit error when a fixed 

                                                      

6 Pfeffermann, D. (2013). New important developments in small area estimation. Statistical Science 28 (1), 40-

68. 

7 Fay, R. E. and R. A. Herriot (1979). Estimates of income for small places: An application of James-Stein 

procedures to census data. Journal of the American Statistical Association  74 (366), 269-277. 
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model is fit to the (area-level or unit-level) outcomes. In other words, these expressions 

would be appropriate if a fixed model was fit to the BRFSS data, and predictions were 

obtained directly from that model. As far as we can see, additional steps will likely be 

required: 

a. Extrapolation to the ACS data (step 7 of the SMART-SAE procedure); 

b. Model selection (issue #6 in the current list).   
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4. Virginia BRFSS Small Area Estimation   

4.1 Health Outcomes of Interest  

The Virginia Department of Health identified the 36 outcomes of interest, listed here: 

Exhibit 2:  Indicator Summary Table 

Indicator # Indicator Name 

1 Poor physical or mental health prevent from doing usual activities 

2 Mental Health -'Not Good' 

3 Diagnosed with Depression 

4 Health Care Coverage - Ages 18-64 

5 Doctor Inaccessible Due to Cost 

6 Do you have one person you think of as your personal doctor or health 

care provider 

7 Ever had a heart attack 

8 Diagnosed with coronary heart disease or angina 

9 Ever had a stroke 

10 Ever had asthma 

11 Ever had skin cancer 

12 Ever had Chronic Obstructive Pulmonary Disease or COPD, emphysema 

or chronic bronchitis 

13 Ever had some form of arthritis, rheumatoid arthritis, gout, lupus, or 

fibromyalgia 

14 Have you had a test for high blood sugar or diabetes within the past three 

years? 

15 Diagnosed with pre-diabetes or borderline diabetes? 

16 Diagnosed with Diabetes 

18* Current Tobacco Users (includes smoking and other forms of tobacco use) 

19 Binge Drinking 

20 Heavy Drinking 

21 Physical Activity in the Past Month 

22 Influenza Vaccination in the Past Year - All Ages 

23 Pneumonia Vaccination - All Ages 

24 Tetanus Vaccination in the Past 10 Years 

25 Tetanus Diphtheria (Tdap) 

26 Shingles (Zoster) Vaccination - Ages 50+ 

27 Ever Tested for HIV 

28 Visited a dentist, dental hygienist or dental clinic in the past year? 

29 How often in the past 12 months would you say you were worried or 

stressed about having enough money to pay your rent/mortgage? 
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30 How often in the past 12 months would you say you were worried or 

stressed about having enough money to buy nutritious meals?  

Indicator # Indicator Name 

31 At Least 1 Fall in the Past Year- Ages 45+ 

33* Mammogram 40+ Past 2 Years 

34 Pap Test 18+ Past 3 Years 

35 Colon Cancer Screening 50+ 

36 Overweight or Obese 

37 Males With a Prostate-Specific Antigen Test Past 2 Years - Ages 40+ 

38 Was there a time in the past 12 months when you did not take your 

medication as prescribed because of cost? 
*During the data analysis and SAE preparation, two of the original health indicators (17 ‘Tested for Diabetes in the Past 3 

Years’ and 32 ‘Driven when you’ve had too much to drink (During the past 30 days)’) were removed from the list and 

replaced with indicators 37 and 38. 

4.2 Data 

The data set used for the SAE was the 2014 Virginia BRFSS, of which there were 9,472 

cases. In the demographic section of the survey respondents are asked what county they live 

in. For the 2014 Virginia BRFSS, 8,885 (93.8% unweighted) respondents provided a 

response of a county within Virginia. Of the 587 remaining cases (6.2% unweighted), 269 

provided a response of either “Don’t know”, “Refused”, or “Other”, or they terminated the 

interview before this question was asked, and 318 respondents participated in the BRFSS 

Survey the interview on their cell phone as a resident of another state, but indicated they 

resided in Virginia; these respondents did not provide a Virginia County of residence. 

According to the BRFSS SMART procedure, a respondent’s missing county was imputed by 

CDC according to the following process: 

 For landline numbers, the frame county (based on the most prevalent county in a given 

100-block) was used. 

 For cell phone numbers, the county was coded based on: 

a. An open-ended self-reported location; 

b. Self-reported ZIP code; or 

c. For the records lacking the above, the largest county population by age and 

race/ethnicity was used. 

The accuracy of the latter imputation step is likely to be low, and it may bias estimates for 

the counties affected (mostly, the counties into which the imputation was made). We expect 

more accurate estimates to be obtained if these imputed values are removed from the data.  

Nonetheless, all 9,472 cases were included in the SAE analysis, regardless of whether the 

county was imputed. 
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4.3 Virginia BRFSS SAE Procedures 

Retaining the main steps and methods of the CDC SMART-SAE procedure outlined above in 

Section 3. CDC BRFSS SAE Methodology, we used the following SAE procedures for the 

2014 Virginia BRFSS.  

1. Produced direct estimates of the health outcomes at the county level. 

2. Performed selection of a concise predictive Fay-Herriot type area-level model. 

3. Fitted a weighted logistic regression model to the BRFSS data with outcomes from the 

survey data, age, race, and gender from the survey data, and the county-level predictors 

selected in step 2. (The procedure was streamlined due to 0/1 nature of the recoded 

outcomes.) 

4. A mixed logistic model was used that utilized both area level and unit level predictors. 

Since the variances of random effects were estimated to be zero in all reported outcomes, 

this was in fact a regular generalize linear model (GLM) weighted logistic regression 

model with these predictors. 

5. Obtained the (unit-level) predicted values from the final model for the matched ACS 

PUMS data. 

6. Obtained the (area-level) point estimates using the ACS PUMS weights. 

7. Obtained the (area-level) variance component due to the regression model parameters 

being estimated using the delta method and the variance-covariance matrix of regression 

parameter estimates. 

8. Obtained the (area-level) variance component due to the posterior empirical Bayes 

distribution of area effects. 

9. Obtained the (area-level) ACS sampling standard errors using the Successive Difference 

Replicates (SDR) variance estimation procedure recommended for the ACS. 

10. Assuming that the model selection error is independent of both the ACS sampling error 

and the SAE MSE, calculate the between-model error as a variance within a small subset 

of the best-fitting candidate models from step 2. 

11. Combine the sources of error assuming independence, and use the square root of thus 

estimated variance to report as the standard error of the SAEs obtained in step 6. 

This procedure was repeated for all 36 indicators of interest for all 133 counties and 

independent cities. 
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5. Reporting Small Area Estimation Results 

The small area estimation output for each of the 36 outcomes is provided in four subsections: 

1) definition of the variable and coding; 2) small area regression models; 3) estimates and 

confidence intervals; and 4) graphical representation of the results. Each of these is detailed 

below. 

The project consists of 32 human-created Stata do-files, 38 automatically created do-files for 

model search, 134 intermediate data files, about 900 graphic files, 38 automatically created 

MS Word reports, 50 Excel files (including both the source files and the output files). 

5.1 Definition of the Variable and Coding 

The first subsection of the results gives the definition of the variable and how it is coded into 

a binary 0/1 variable. Note that some outcomes are negatively worded. For example, the poor 

health days variable has a value of 1 for those who report nonzero number of days when poor 

health prevented the respondent from daily activities. Another example is for the health 

insurance coverage variable, which has a value of 1 for those who do not have insurance. 

5.2 Small Area Regression Models 

The second subsection provides the selected SAE models that resulted from the model 

search. All models include demographic covariates following Pierannunzi et al (2016). For 

each outcome, three models are reported.  

1. The first model is a weighted mixed logistic regression model with demographic 

variables only, and area effects only included as random effects (i.e., no area level 

covariates are being used). This is the model that would have resulted from the SMART-

SAE approach of Pierannunzi et al (2016).  

2. The second model is a logistic regression model without area effects.  

3. The third model is the mixed model with both demographic unit-level variables and 

aggregated area-level covariates in the best fitting Fay-Herriot model.  This third model 

“Mixed with area covariates” is the final model used for the SAE. 

It must be pointed out that in all of the final models with both unit-level demographic 

variables and area-level aggregated variables, the area-level random effect variance was 

estimated to be zero. The results are summarized in Exhibit 1. Rao and Molina (2015, Sec. 

9.3) discuss this as an undesirable artefact of mixed models, as in this case, compositing of 

the model-based and direct-estimates is limited, and the estimates for the areas with larger 

effective sample sizes do not benefit from greater precision of direct estimates. With zero 

area variances, model-based estimates should be interpreted as interpolation/extrapolation of 

the area-level effects using the selected covariates. If such model approximation is subject to 

specification error, interpolation and especially extrapolation errors may result. The issue is 

partially controlled for by incorporating the variance component over the range of several 

best performing models. The number of such models is reported under the model table, and 

ranges from 1 to 15 (the number was capped at 15 to reduce the computational time). To the 

extent that a given area may be outlying on its area-level covariates, and thus at risk of 

extrapolation biases, it will also be likely to have a greater variability of estimates obtained 
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from the competing models. As the latter component is incorporated into the SAE standard 

errors, we believe that risks of extrapolation errors are mitigated. 

Note that the estimated Intraclass Correlation Coefficient (ICC) for counties varies from 0 to 

5.5% (tobacco use) in the models with demographic variables only. Here, ICC is estimated as 

ICC =
σu

2

σu
2 +  π2/3

 

where π2/3 is the variance of logistic distribution. In other words, the reported estimated 

standard deviation of the area variance should be compared to the standard deviation of the 

logistic distribution, π/√3 = 1.814, to gauge the relative importance of the area effects, on 

top of the demographic effects, unaccounted for in that model. Note that some important 

person-level covariates that have not been used either in Pierannunzi et al (2016) or here 

were socio-economic status (which can be proxied by income and education) or interactions 

of demographic variables (e.g., age by gender). 

Exhibit 3:  Estimated Standard Deviations of County-Level Random Effects. 
 Demographic v variables only Demographic + area variables 

Outcome st. dev. 

of area 

effects 

(std. 

error.) 

ICC st. dev. of 

area 

effects 

(std. 

error.) 

ICC 

outc1_poor_hlth_days 0.1535 (0.0693) 0.0071 0.0000 (0.0000) 0.0000 

outc2_ng_ment_hlth 0.0000 (0.0000) 0.0000 0.0000 (0.0000) 0.0000 

outc3_depression 0.2791 (0.0516) 0.0231 0.0000 (0.0000) 0.0000 

outc4_health_cover 0.3695 (0.0626) 0.0398 0.0000 (0.0000) 0.0000 

outc5_doctor_cost 0.3528 (0.0871) 0.0365 0.0000 (0.0000) 0.0000 

outc6_doctor_person 0.1436 (0.0572) 0.0062 0.0000 (0.0000) 0.0000 

outc7_heart_attack 0.2354 (0.1466) 0.0166 0.0000 (0.0000) 0.0000 

outc8_heart_disease 0.0963 (0.2322) 0.0028 0.0000 (0.0000) 0.0000 

outc9_stroke 0.0000 (0.0000) 0.0000 0.0000 (0.0000) 0.0000 

outc10_asthma 0.1728 (0.0794) 0.0090 0.0000 (0.0000) 0.0000 

outc11_skin_cancer 0.0000 (0.0000) 0.0000 0.0000 (0.0000) 0.0000 

outc12_copd 0.3187 (0.0738) 0.0300 0.0000 (0.0000) 0.0000 

outc13_arthritis 0.2856 (0.0706) 0.0242 0.0000 (0.0000) 0.0000 

outc14_diabetes_test 0.1199 (0.0638) 0.0044 0.0000 (0.0000) 0.0000 
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 Demographic v variables only Demographic + area variables 

Outcome st. dev. 

of area 

effects 

(std. 

error.) 

ICC st. dev. of 

area 

effects 

(std. 

error.) 

ICC 

outc15_prediab_diag 0.0000 (0.0000) 0.0000 0.0000 (0.0000) 0.0000 

outc16_diabetes_diag 0.2467 (0.1055) 0.0182 0.0000 (0.0000) 0.0000 

outc18_tobacco_user 0.4379 (0.0620) 0.0551 0.0000 (0.0000) 0.0000 

outc19_binge_drink 0.2435 (0.0817) 0.0177 0.0000 (0.0000) 0.0000 

outc20_heavy_drink 0.0000 (0.0000) 0.0000 0.0000 (0.0000) 0.0000 

outc21_phys_activity 0.2371 (0.0503) 0.0168 0.0000 (0.0000) 0.0000 

outc22_flu_vacc 0.0000 (0.0000) 0.0000 0.0000 (0.0000) 0.0000 

outc23_pneum_vacc 0.0511 (0.1183) 0.0008 0.0000 (0.0000) 0.0000 

outc24_tetanus_vacc 0.0730 (0.1025) 0.0016 0.0000 (0.0000) 0.0000 

outc25_tdap_vacc 0.1709 (0.0526) 0.0088 0.0000 (0.0000) 0.0000 

outc26_shingles_vacc 0.1026 (0.1281) 0.0032 0.0000 (0.0000) 0.0000 

outc27_hiv_test 0.2786 (0.0552) 0.0230 0.0000 (0.0000) 0.0000 

outc28_dentist 0.3185 (0.0513) 0.0299 0.0000 (0.0000) 0.0000 

outc29_pay_mortgage 0.2497 (0.0602) 0.0186 0.0000 (0.0000) 0.0000 

outc30_pay_food 0.3400 (0.0525) 0.0339 0.0000 (0.0000) 0.0000 

outc31_falls 0.0000 (0.0000) 0.0000 0.0000 (0.0000) 0.0000 

outc33_mammogram 0.0962 (0.1175) 0.0028 0.0000 (0.0000) 0.0000 

outc34_pap_test 0.2311 (0.1435) 0.0160 0.0000 (0.0000) 0.0000 

outc35_colon_test 0.1300 (0.1144) 0.0051 0.0000 (0.0000) 0.0000 

outc36_oweight_obese 0.2458 (0.0430) 0.0180 0.0000 (0.0000) 0.0000 

outc37_psa_test 0.0000 (0.0000) 0.0000 0.0000 (0.0000) 0.0000 

outc38_prescr_cost 0.2542 (0.0787) 0.0193 0.0000 (0.0000) 0.0000 

Note: *, p < 0.05; **, p < 0.01; ***, p < 0.001 
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5.3 Estimates and Confidence Intervals 

The third subsection provides the numeric summaries for each county and independent city, 

grouped by health districts on each page. These summaries include the direct estimate (i.e., 

the estimate obtained from the survey data alone using BRFSS weights), its confidence 

intervals (CI), and the composite estimate with its confidence interval. The confidence 

intervals are Wilson confidence intervals. Dean and Pagano (20158) found those to be among 

the most accurately and robustly performing ones in their comparison of seven different 

methods for proportion confidence intervals in complex surveys. For the proportion estimate 

p̂ and effective sample size n∗, the Wilson confidence is found by solving for p the coverage 

equation 

(p̂ − p)2 ≤ z
1−

α
2

2 p(1 − p)

n∗
  

which produces the confidence interval of the form 

p̂ +
z

1−
α
2

2

2n∗ ± z
1−

α
2

√p̂(1 − p̂)
n∗ +

z
1−

α
2

2

n∗

1 +
(z

1−
α
2

2 )

n∗

 

Wilson confidence intervals are always contained between 0 and 1 (unlike Wald confidence 

intervals p̂ ± z
1−

α

2

√
p̂(1−p̂)

n∗  ), and are asymmetric near zero or one. For both the direct 

estimate and the composite estimate, the effective sample size is calculated by reversing the 

variance of an i.i.d. statistic formulae, namely: 

n∗ =
p̂(1 − p̂)

(s. e. [p̂])2
 

where the standard error is either the design-corrected standard error for the direct estimate, 

or the composite standard error for the composite estimate. 

5.4 Graphical Representation of the Results 

In the fourth subsection for each outcome, SAE results are visualized using inchworm plots 

(Rhoda, 2016; see https://github.com/BiostatGlobalConsulting/inchworm-plots-stata). The 

plots are designed to visually convey some of the properties of the confidence intervals for 

proportions that are not necessarily obvious in the tabular representation of the estimates, 

their standard errors, and confidence intervals. First, confidence intervals are based on a 

density, with the highest, most likely values near the estimate, and the least likely values 

further away from it. Second, asymmetry of confidence intervals for estimates near zero or 

                                                      

8     Dean, N. and M. Pagano (2015). Evaluating Confidence Interval Methods for Binomial Proportions in 

Clustered Surveys. J Surv Stat Methodology, 3 (4): 484-503. doi:10.1093/jssam/smv024 
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one and low values of p̂n∗, (1 − p̂)n∗ is, likewise, not immediately obvious from the numeric 

summaries. Inchworm plots make these features more prominent. 

On each plot, the orange curve and the shaded area beneath it represent an approximation to 

the posterior distribution of the estimate for the given area-and-outcome-specific value of the 

effective sample size n∗. The grey bookend markers represent Wilson confidence intervals. 

Both the estimates and the CIs are additionally reported in the numeric output panel on the 

right9. 

Consider the results for the first outcome, 1+ days of poor health in past 30 days, in Central 

Shenandoah and Lord Fairfax health districts.  

Exhibit 4:  1+ days of poor health in past 30 days 

 

                                                      

9 There are small discrepancies in the width and endpoints of the confidence intervals between those reported on 

the plots and those reported in the tables. We have been able to identify the differences as having to do with 

the different definitions of the effective sample sizes used in our code and in inchworm plots code. 
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Most results are found to be in the 30% to 50% range. Several results are of importance. 

First, the confidence interval for Highland County demonstrates extreme skewness. The point 

estimate is only 0.4%, not commensurate with other estimates; but it is accompanied by a 

very wide and very asymmetric confidence interval. The asymmetry is clearly seen on the 

graph. Most other confidence intervials, however, are symmetric, as sufficiently large 

(effective) sample sizes are available for these other counties and cities. The second 

important observation is that the lack of information is reflected in a notably higher width of 

confidence intervals for Bath County and Buena Vista City. Also, since each curve represents 

an approximation to the distribution of the estimate with an area of 1, the wider confidence 

intervals for those two areas are associated with lower heights of the curves. 

5.5 Additional Diagnostics 

Some additional diagnostics regarding the performance of SAE models in comparison to 

direct estimates are collected in an additional diagnostic Excel file. Along with the county 

name, County FIPS, Direct estimate, Direct 95% CI, SAE composite, and SAE 95% CI 

(same as reported in the Word file), the following information is included: 

 Direct Point vs. SAE CI  
Results: “Check” if the direct estimate is inside the SAE CI; “Fail” if the direct estimate 

is outside of the SAE CI. 

Rationale: It is reasonable to expect that the direct estimate will be within the SAE CI. 

However, since the SAE and direct estimates are not independent, it is difficult to say 

whether this event should happen. For most outcomes, the direct estimates are outside the 

SAE CI about half of the time. 

 SAE Point vs. Direct CI 
Results: “Check” if the SAE estimate is inside the direct CI; “Fail” if the SAE estimate is 

outside of the direct CI. 

Rationale: It is reasonable to expect that the SAE estimate will be within the direct 

interval. We should expect this to happen quite often, as direct CIs are quite wide, and 

this diagnostic check is a very low bar to pass. 

 SAE CI vs. Direct CI 

Results: “Fully within” if the SAE CI is fully contained within the direct CI; “Some 

overlap” if SAE and direct CIs overlap, but each has portions not covered by the other; 

and “No overlap” if SAE and direct CIs do not overlap at all. 

Rationale: This is probably the most reliable check on the relation between the SAE and 

the direct estimates. When the SAE CI is fully within the direct CI, we can say that SAE 

helped zoom in on the range where the true value is likely to be. Lack of overlap should 

be particularly troubling. 

 SAE S.E. Less Than Direct S.E. 
Results: “Check” if SAE standard error (s.e.) is less than or equal to that of the direct 

standard error; “Fail” if SAE standard error is greater that the (nonzero) direct standard 

error; “Zero direct s.e.” if the direct standard error is zero (so the SAE is bound to be 

greater than the direct standard error). 
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Rationale: We should reasonably expect the standard errors to go down in SAEs as we 

incorporate the regression model into the estimates. 

 Percent variance due to ACS sampling error. 

 Percent variance due to the BRFSS model coefficients sampling error (this is the 

dominant component for most areas and outcomes). 

 Percent variance due to model uncertainty. 

A summary of these results is also provided in the fifth section of the outcome-specific 

reports. 

 


